Top 5 Trending Software’s with Maximum Market-share in CAD & AEC Industry

Top 5 Trending Software’s with Maximum Market-share in CAD & AEC Industry

There are the various software’s in the market currently for AEC & CAD Industry, but out of them there are 5 major software’s in the market has set a record of creating a huge demand in the last few years. We figured out why these software’s adoption rate was higher and what are their strong features that create a huge dependency among the Architects, Contractors, Modelers & Renderers for their efficient work. Here are the TOP 5 Sofware’s that has the major market share in CAD & AEC Industry.

  1. Revit (BIM):

In this current BIM Scenario REVIT is the tool that holds the major market share in the AEC Industry of almost 48% as per NBS Report 2017. It is used for Architecture design, Modeling & Documentation of any project and its developed by Autodesk INC.

Revit is Allowing Architects, engineers, and the Construction Industry to make changes in real time. It can track the amount of time each person spends working on the project, projecting construction costs and timing from the beginning of a building; thus, helping construction meet completion goals better than ever before. It also tells the AEC information right down to what, when, and where the building will need maintenance.

Here are the top 5 benefits of using Revit on your BIM Project.

  1. Better Collaboration Using Revit
  2. Best for resolving conflicts between Project Members.
  3. Revit is Detailed Oriented (Provides all informatory data required to the respective coordinating members using BIM 360 Tool).
  4. It’s been easy to visualize your project and also the simulation of the project using Revit.
  5. Identify & Meet with clients with a splendid presentation using Revit.

 

  1. ArchiCAD (BIM) :

ArchiCAD is the 2nd most commonly used software for BIM Projects and it’s been adopted by an average of 18% market by AEC Industry. ArchiCAD has been developed by Graphisoft by keeping various problems and their solutions for many divergent segments in the AEC Industry.

Top 5 benefits for ArchiCAD :

  1. Enhanced Capacity of maintaining the productivity by making real-time projects collaborations easier and faster.
  2. Intelligently designed for Architects by focusing on their needs.
  3. Easy to learn and not heavy duty functions which also reduce the IT Cost.
  4. ArchiCAD is a server-based technology and it empowers firms for easy configuration for any size of projects.
  5. Maintain the competition by overcoming from the risk of delays of documentation and design process.

 

  1. Primavera (BIM): Project Planning & Scheduling

    #BIM TOOLS #CAD TOOLS
    #RENDERING TOOLS #ARCHITECTURAL TOOLS

By using primavera we can prepare any business project portfolio. It has almost 30% of the market share in the Industry. Primavera handles large-scale and mature projects very easily and it has been developed by Oracle INC.

Here are the top benefits of using Primavera :

  1. Maintain your resource capacity
  2. Planning & Scheduling of any convoluted projects is now easier by using Primavera P6.
  3. Optimize your resources by tracking and by designating best resources.
  4. After the Planning phase, it’s very important to visualize and monitor your project performance according to your plan and we can do that using Primavera.
  5. Project performance analysis gives an idea of any errors by which we can make alternate project pans.

 

  1. Solidworks (Mechanical CAD) :

SOLIDWORKS is a parametric-based 3D modeling CAD software and is been adopted by more than 1,50,000 companies worldwide. Apart from dominating manufacturing sector, This 3D Modelling software has also been used in the interior, architectural and medicine industries to name a few.

SOLIDWORKS provides a wide platform for solid modeling, as well as for surface modeling both controlled parametrically. Parametric 3d modeling is a modeling technique in which geometries are controlled by using numeric parameters like the diameter of a circle and geometry based parameters like concentricity and perpendicularity. Hence one can capture design intent to change the product’s geometry and shape throughout the product development process.

Here are the Top Advantages of Using SOLIDWORKS,

  1. User-friendly Interface making it easier to learn as compared to other CAD software.
  2. Easy to manipulate design at any stage in the product development phase.
  3. Real view graphics allow the model to be visualize rendered view in real time.
  4. Integrated add-ons help’s in analyzing dynamics, kinematics etc.
  5. This 3D Modelling software minimizes the time and development cost and allows you to make the design process effortless.

@BIMNCAD, Source: www.bimncad.com

 

  1. Autodesk 3DS Max (Architecture & Interiors Renderings) :

3Ds Max is a product by Autodesk INC, it has been diversified across the Engineering and Construction (AEC) business and has strong 3D modeling & Rendering capabilities.

3Ds Max consists of the many wealthy options that facilitate the modelers, the renders and also the designers to form unflawed photo-realistic 3D pictures also as 3D animations of any construction component.

Here are the top benefits of using 3Ds Max for 3D CAD Modeling & Rendering in the AEC Industry:

  1. In 3D animation services particularly the structural, the mechanical animation & in AEC industry, 3Ds Max 2018 has created notable improvements in the visualization, the motion graphics, the visual effects, etc.
  2. 3ds Max is a digital content creation software package, It can even produce 3d printable elements within the laptop which will replace human effort or sophisticate designed device
  3. It helps Modelers, Renderers and also the alternative users to increase their efficiency because of the diversification in 3D CAD Modeling, 3D Renderings, and Animation features.
  4. 3ds Max incorporates a dialog tool referred to as Material Editor that enables users to create & edit materials and maps in their scenes. they’ll be able to apply artistic textures, as well as, simulate refractions, reflections, and many effects as they assign materials to things.
  5. You can now link objects together in 3Ds Max, As a result, it allows the user to form hierarchies and can animate sets of objects in once.
TOP 5 BIM Tools & Trends you Should Watch out this Year.

TOP 5 BIM Tools & Trends you Should Watch out this Year.

In recent years, Building Information Modeling, otherwise known as BIM, has grown in popularity with professionals in architecture, engineering, and construction. This is mainly due in part to the efficient tools it gives AEC professionals in the planning, designing, construction, and overall management phases of buildings and infrastructures. By gaining popularity on various fields it creates various “BIM Tools” to optimize your project and to gain better insights.

BIM has unequivocally become a necessity for construction in almost every developed and developing country. As we all know BIM plays a major role in providing crucial project information, And with the increased popularity in recent times these are the “Top 5 BIM Tools & Trends” we should watch out for before doing any project using Building Information Modeling.

#BIM #BuildingInformationModeling

  1. COBie (BIM Tools, Plugin)

COBie stands for “Construction Operations Building Information Exchange” it’s a subset of BIM and focused on providing asset data. COBie is the format of information exchange only.

How you can get most from open standard BIM (i.e Cobie)

Looking at Plan, Elevation & Section,

  • Mental Model or section visualization
  • Everyone will be discussing the items they will be needing to know about
  • We get a good understanding what every other person meant by their own drawings
  • More drawings now then even before, Because it’s just so easy to print them all, Designers are the only one who are required to deliver tons of paper
  1. 4D, 5D, 6D & 7D BIM (BIM Tools)

BIM is assisting the AECO industry to reduce delays and costly overruns, implementation of more advanced 5D BIM tools can also avoid potential litigation. A 3D digital model of the planned construction is produced to allow design issues to be resolved before building even starts; more data can be analysed alongside the model to include scheduling and cost information thus avoiding costly delays dues to clashes as well as expensive reworking, this is 4D BIM. For a complete visualization of the project, 5D BIM considers cost, schedule and spatial design for the entirety of the project from conception to demolition to everyone involved in the project.

  • 6D-BIM tool helps perform energy consumption analysis. The utilization of 6D-BIM technology can result in more complete and accurate energy estimates earlier in the design process.
  • The 7D BIM tool allows participants to extract and track relevant asset data such as component status, specifications, maintenance/operation manuals, warranty data etc.
  1. 3D Printing

3D Printing technology has gained a lot more popularity in AEC Sector. It has a great potential of creating valuable and accurate building elements in a very short span of time at a very low cost. Apart from dominating manufacturing sector, it’s also been used in interior, architectural and medicine industries to name a few. We can use 3D Printing to create prototypes of Prehab materials & Manufacturing Components and submit it to construction partners.

  1. Augmented Reality/ VR

With a superb success of Augmented Reality on mobile devices this technology now gain the advantage of diversifying its use towards BIM (Building Information Modelling) industry.

AR Technology for BIM (Building Information Modelling) has made a great effort on providing BIM Model data hands free in 3D. By enhancing BIM with AR Technology has proven how we can understand about the built environment.

  1. Green Building Effort

In today’s world of pollution, greenhouse gases, energy footprints, and more; tools like this are no longer sitting around on the shelf. With the worlds collective environmental problems, particularly climate change, being a severe global issue; just waiting for the bright minds of today, and technology, to concentrate its efforts on solving this sobering challenge. BIM has the power to change all of this when optimized for today’s sustainable construction. The AEC now realizes how vital BIM for sustainable building design. The AEC also recognizes how badly needed such a powerful tool is and can be. Assisting in this global issue, the aims of this BIM Tool are leaning more toward sustainable building design. The future of building information modelling is taking many steps to solve these issues.

Source : www.bimncad.com

How Upcoming Infrastructure Projects can Revolutionalize BIM in India?

How Upcoming Infrastructure Projects can Revolutionalize BIM in India?

BIM is not a new and unknown term in India anymore.

Introduction

In recent years, Building Information Modeling, otherwise known as BIM, has grown in popularity with professionals in architecture, engineering, and construction industry. This is mainly due in part to the efficient tools it gives AEC professionals in the planning, designing, construction, and overall management phases of buildings and infrastructures. However, in India, the implementation of BIM modeling and applications has been slow and gradual in many industries.

India’s slow rise in BIM

BIM has unequivocally become a necessity for construction in almost every developed and developing country including India. So why has the process taken long to adopt? Generally, India has been a bit hesitant to adopt new technologies, and BIM expertise in india are limited in the region. Not to mention the heavy initial cost of BIM and the lack of involvement from the government of india to quicken its implementation. However, rapid urbanization and industrialization has changed the scenario and has given rise to the need for better infrastructural set ups in india. As it is said that the quality of the country’s existing infrastructure is neither efficient nor environmentally optimal. Which means there is a need for BIM technology to revolutionize the construction landscape in India.

 Construction Companies Using BIM

As mentioned earlier, AEC professionals have incorporated BIM into their projects, and this includes some of the biggest construction companies across the globe like Hochtief, China Communications Construction Group, Vinci, and Samsung C&T. Among them is also Indian based company Larsen & Toubro. L&T is a company that claims to have mastered BIM from the start. Beginning with a conceptual demonstration to detail architecture, all the way up to post construction, among other performance-enhancing applications. This extends to their projects including airports, IT infrastructure buildings, public buildings such as sport infrastructure and metro stations, and factories using steel, reinforced concrete, and pre-stressed concrete. The adoption of BIM processes has allowed experts to explore a project’s crucial characteristics physically and digitally even before it’s been completely built.

So how does L&T incorporate BIM into their projects and can more Indian based construction companies follow? These are six key factors in L&T’s BIM incorporation of software and technology:

Turnkey Capability

To ensure a project can even begin, it is vital to establish the human need for it combined with the efficient use of space. L&T offers turnkey design and construction of infrastructure and modern amenitiesthat meet customer needs. This eliminates the possibility of having a project fail before it can reach stakeholders.

Construction Techniques

Using advanced production techniques and high-speed technologies like heated tunnel forms and aluminum form work help in the reinforcement of walls and floor slabs on a continuous single pour which thereby reduces time and cost. Buildings are less acceptable to collapse which reduces the need for rebuilding.

Avant-Garde Technology

L&T has India’s largest fleet of construction equipment that offers speed, high quality, and cost-effective construction. With a combination of construction techniques and a systematic schedule, L&T is able to ensure quick work progress at high levels of accuracy and enhanced productivity with safe practices. Buildings are built with accuracy and speed which reduces the cost and time to finish.

Design and Build

L&T’s concept is simple: The General Contractor takes single-point-responsibility. To elaborate, the General Contractor is responsible for coordinating with the other AEC professionals involved in the project, including MEP consultants and promoters. The General Contractor is able to collaborate and communicate with the other team members through BIM software as they work together, saving time and avoiding confusion with the software’s cloud feature.

Precast Technology

This technology ensures improved quality and stability within its environment. It offers precast engineering like a precast feasibility study, precast structural concepts, and architectural coordination, and recast element detail design for stripping and transportation, among other things. A detailed precast is able to show the feasibility of a project before its completion including its stability and design which is cost effective. This includes the possibility of unforeseen circumstances such as natural disasters or construction hazards.

Finishes Implementation Centre (FIC)

A team of professionals set benchmarks for project deliverables without compromising on the quality of final seen finishes. L&T’s construction engineers transform the architect’s designs and drawings to reality. Projects are delivered to end users as a product built to structural rigidity. Visualization and simulation including the use of 3-D models help assure clients of their finished project and allow for accuracy before a project is complete.

Benefits of using BIM

As evident by L&T, there are many benefits to using BIM technology. Among them are cost, time, management, visualization, and maintaining control of possible unforeseen circumstances. BIM software ensures collaboration with all teams and helps eliminate the need for having to do reworks which is both cost-effective and time-saving.

The Future of BIM in India’s Industry

With its many benefits, India is quickly realizing that BIM modeling is vital for AEC professionals to be able to work together to design and develop buildings. However, despite the known benefits, there are still barriers that prevent India from fully engaging in BIM implementation. These include cost of equipment, client driven limitations, lack of education and training, legal and commercial barriers. The good news is that progress is being made. There are now more than 50 AECO organizations that deliver BIM projects to the local and global market. More buildings and infrastructure are being built in India using BIM software and technology including metro stations and housing facilities. Free seminars are being held in Dubai at Construction Expos to specifically inform AEC professionals about the many benefits of BIM and how to utilize the model. This is a big step for the AECO industry, which is the second largest industry in India, employing more than 35 million as of 2015.

Conclusion

Countries, whether developed or developing, are seeing the long-lasting value in BIM technology. Though there is still progress that needs to be made and barriers that need to be lifted, with its adoption, future indications are promising for BIM technology in India’s Construction Industry.

 

 

 

 

 

 

 

 

 

 

 

 

Why Should Building Information Modeling (BIM) Start from the Early Stages?

Why Should Building Information Modeling (BIM) Start from the Early Stages?

Why Should Building Information Modeling (BIM) Start from the Early Stages ?

So, what is BIM or Building Information Modeling?

The definition of Building Information Modeling or Building Information Model(BIM); describes the process of designing a building on a collaborative level. Thus, using one system of computer models, coherently bringing the design together; rather than many separate sets of drawings. Moreover, a digital representation of the functional and physical characteristics of a facility. It is a resource of shared knowledge or information regarding a facility. This information can be essential to making responsible decisions regarding a facility way to early than from the traditional CAD drawings. Not just from the conception of the building, but during the facilities life cycle too. It is a plan from the conceptualization of the structure to demolition. In short, it is a piece of software(s) that designs the building, from birth to death.

Understanding (BIM) Modeling, helps us see its potential impact.  Now, that we understand the definition of Building Information Modeling (BIM) software, let’s look at a few of the advantages BIM software offer.

  • Easy visualization of your construction project in a 3D environment.
  • Less rework on design changes thereby acting as money saver and time saver,
  • Improved collaboration between consultants reducing on-site coordination issues early,
  • Various simulations can be performed such as construction sequencing and construction cost providing transparency among shareholders

It is easy to see why starting with BIM or Building Information Modeling in the earliest stages of a construction would be the smart move. BIM allows the stakeholders to bring their construction projects to fruition more seamlessly, and with fewer surprises. Traditionally designing buildings relied mostly on two-dimensional technical drawings. (e.g., sections, elevations, and plans to name a few), recently, the shift to BIM has created more value.

3D (height, width, and depth), and beyond!

With the development of computer programs from old days, there was a considerable innovation of being able to create your buildings in 3D and the old drawing table and tools of the trade of architecture. Drafting on the paper in the digital was only the start. Building Information Modeling(BIM) extends the scope of what the older programs did. Also, taking it the ways beyond 3D as technology kept changing and is changing.

Building information modeling, 3D design software, with a twist.

Not only you have the 3D capabilities as you had in the older and more traditional CAD software, BIM brings time as the fourth dimension, cost as the fifth dimension and has a much broader scope and meaning than just geometry. It carries the manufacturer information for the properties and quantities of building components, and materials used in the completion of the building. BIM is capable of projecting completion time as and when necessary repairs to the structure might expect. From Construction Documentation to Maintenance, everyone working on the project is on the same page and they have access to, and can enter data into the BIM, which is essential to a seamless outcome.

(BIM) modeling services can build from the ground up.

The BIM modeling program or services first starts from the ground underneath the structure. The project begins with the images of the earth, digital elevation, and aerial imagery, along with laser scans of the existing site. BIM is capable of capturing real-time information in regard with the project location. BIM Designers benefit from all the input compiled and shared in a way paper was never able to do.

Imagine you need to make changes to your project, now what?

There was a time when, if there were changes in a plan (e.g., number of size of windows) for some reason, an entirely new drawing had to be redraw to account for the differences. Maybe just to add a staircase or another exit. Now, while using BIM, you make the changes, hit save, and the whole team has access to the new information in real time using cloud technology. Instead of heading back to the drawing table, and starting again, adding and taking elements away has become a thing of ease now. Think of the money saved by an action to just save the project, thus helping everyone to stay on the same page while working on the construction project; this is one of the more luxurious aspects of Building information modeling. It will also link construction cost and installation costs for the newly added attributes to the building. Thus, saving time and significantly reducing the overall cost of the building project.

Building Information Modeling(BIM) programs and the environment.

BIM modeling can also take the overall operational costs of the finished product in mind. It also has multiple simulation options available so that the design staff can observe the building attributes in all seasons. Its features such as this that can assist in building smarter, more economical, and energy efficient structures. With the click of a button, all the analyses can be done to achieve peak performance. Building Information Modeling(BIM) programs can also detect potentially costly errors on the construction site and can inform about its occurrence such as on-site coordination issues. Things such as electrical conduits or ducts that runs into beams on site; this on-site issue can be expensive, and can be effectively bypassed with BIM modeling. The problem will be detected before you break ground to construction. BIM has the ability to fix such issues, such as these on-site coordination issues, that often plague projects when run by multiple teams. Here again, BIM is a money saver for construction projects. Also, BIM is an excellent way for the transfer of knowledge by sharing traditional plans, sections, elevations, as well as other types of reports that the teams can share with other parts of the project team. The software has customizable features and automation tools such as annotating a category of elements at once, saves precious drafting time; thus, conserving the project money and construction pitfalls.

BIM modeling software helps sequence the steps in a building plan.

BIM modeling software can sequence the steps of building the structure and all phases of these steps, down to the materials needed to accomplish the next step in the series of construction. The sequencing of steps is completed with animations and simulations, helping to coordinate the construction processes. Hence, delivering a more predictable outcome of the project beneficial for stakeholders. These are just some of the reasons that if a BIM plan is in place and is wisely used in the earlier on in the project, the better or smoother the project progresses. Making projects more seamless while saving valuable time and money on any project from a home to a high-rise building.

Over head water tank analysis using STAAD.Pro

Over head water tank analysis using STAAD.Pro

In this tutorial, over head water tank analysis will be done using STAAD.Pro V8i. The detailed procedure is given below.

Open STAAD.Pro V8i and create a new Space structure with Meter and KiloNewton as Length Units and Force Units.

Select the Beam page under Geometry tab; the Snap Node/Beam window is displayed.

Close the Snap Node/Beam window.

In the Nodes window, create the nodes with the data given below. Figure-1 shows the nodes created.

NodeX

 

m

Y

 

m

Z

 

m

10200
21200
31230
44250
52170
64180

over head water tank analysis using staad pro

Figure-1 The Nodes created

Now, we will create the members in the upward direction so that the plates could be created with the same orientation. If the plates are created in different orientation, you cannot assign a single load case to plates with different orientations.

Create the members with the data given below. Figure-2 shows the members created.

BeamNode ANode B
152
221
323
434
556

over head water tank analysis using staad pro

Figure-2 The Members created

 

Now, we will create a segment of the tank using the Circular Repeat tool.

Select all the members and then choose the Circular Repeat tool from the Geometry menu; the 3D Circular dialog box is displayed.

Enter the values as shown in Figure-3.

over head water tank analysis using staad pro

Figure-3 The 3D Circular dialog box

Choose the OK button; the model will be repeated at 20 degrees with rotational axis as Y-axis.

Select all the members and then select the Create Infill Plates option from the Geometry menu; the plates will be automatically created in the areas enclosed by the members.

Select the outer periphery beams as shown in Figure-4 and delete them.

over head water tank analysis using staad pro

Figure-4 Periphery beams to be deleted

Now, we will apply loads to the plates.

Select the Loads & Definition page from the General tab; the Load & Definition window is displayed.

Select the Load Cases Details node in the Load & Definition window and choose the Add button; the Add New: Load Cases dialog box is displayed with the Primary node selected by default.

Select the Fluids option from the Loading Type drop-down list and enter Fluid Loads in the Title text box.

Choose the Add button; the primary load case will be created under the Load Case Details node of the Load & Definition window. Close the Add New: Load Cases dialog box.

Select the newly created Fluid Loads load case and choose the Add button from the Load & Definition window; the Add New: Load Items dialog box is displayed.

Select the Plate Loads node in the Add New: Load Items dialog box; the Pressure on Full Plate page is displayed by default.

Enter -76 as load intensity in the W1 text box and select GY as the load direction. Choose the Add button; the load is added under the Fluid Loads load case.

Select the Hydrostatic page from the Plate Loads node in the Add New: Load Items dialog box; the Hydrostatic page is displayed.

The options are unavailable as no plates are selected.

Choose the Select Plate(s) button from the Add New: Load Items dialog box; the Selected Items dialog box is displayed.

Choose the Plates cursor and select the plate as shown in Figure-5; the plate number is displayed in the Selected Items(s) dialog box.

over head water tank analysis using staad pro

Figure-5 The selected plate onto which load is applied

Choose the Done button from the Selected Items(s) dialog box; the Selected Items(s) dialog box is closed and the options are available in the Hydrostatic page.

Enter -53.9 in the W1 edit box and -0.009 in the W2 edit box.

Select the Y and Local Z radio buttons in the Interpolate along Global Axis and Direction of pressure areas, respectively.

Choose the Add button; the load is added under the Fluid Loads load case.

Similarly, add the hydrostatic load of the magnitude ranging from -53.9 to -66.4 kN/m2 on the plate just below the vertical plate, as shown in Figure-6.

over head water tank analysis using staad pro

Figure-6 The selected plate onto which load is applied

Now we will assign the uniform pressure created in previous steps onto the bottom plate of tank.

Select the uniform pressure load and assign it to the plate as shown in Figure-7.

over head water tank analysis using staad pro

Figure-7 The load applied onto the bottom most plate

Create a new load case for dead loads and add self weight and a uniform load for railing. The railing will be placed onto the beam situated at the edge of the cantilever plate, as shown in Figure-8.

over head water tank analysis using staad pro

Figure-8 The self weight and railing load applied

Now we will provide sectional properties to the model.

Select the Properties page from the General tab; the Properties – Whole Structure window is displayed.

Choose the Thickness button from the Properties – Whole Structure window; the Plate Element/Surface Property dialog box is displayed.

Enter 0.15 as thickness in the Node 1 edit box and make sure that the Concrete option is selected from the Material drop-down list. Choose the Add button; the Plate Element/Surface Property dialog box is closed.

Select the Assign to View radio button from the Properties – Whole Structure window and then choose the Assign button; the property is assigned to each plate created.

Choose the Define button from the Properties – Whole Structure window; the Property dialog box is displayed.

Select the Rectangle node; the Rectangle page is displayed. Enter 0.45 and 0.30 in the YD and ZD edit boxes respectively.

Choose the Add button; the Property dialog box is closed and the property is added to the Properties – Whole Structure window.

Assign the newly created property to the members in the model.

Similarly, assign a cross sectional property of 0.15m x 0.15m to the member carrying railing load.

over head water tank analysis using staad pro

Figure-9 Properties added and assigned to the model

Select the Support page from the General tab; the Supports – Whole Structure window is displayed.

Choose the Create button; the Create Support dialog box is displayed with the Fixed tab chosen by default.

Choose the Add button; the fixed support is added to the Supports – Whole Structure window.

Assign the fixed support created to the lowermost nodes, as shown in Figure-10.

over head water tank analysis using staad pro

Figure-10 Fixed supports added to the model

Select the plates and members using the Geometry Cursor and choose the Circular Repeat option from the Geometry menu; the 3D Circular dialog box is displayed.

Enter the values as shown in Figure-11.

over head water tank analysis using staad pro

Figure-11 The 3D Circular dialog box

Choose the OK button; the model will be repeated at 360 degrees with rotational axis as Y-axis

Figure-12 shows the water tank created.

over head water tank analysis using staad pro

Figure-12 Model of water tank created

Figure-13 and Figure-14 shows the 3D rendered views of the water tank.

over head water tank analysis using staad pro

Figure-13 3D rendered view of the water tank model

over head water tank analysis using staad pro

Figure-14 3D rendered view of the water tank model

Now, we will analyze the model created.

Select the Perform Analysis option from the Analysis fly-out in the Commands menu; the Perform Analysis dialog box is displayed.

Close the Perform Analysis dialog box and select the Run Analysis option from the Analyze menu; the STAAD Analysis and Design window is displayed showing the progress of solution.

Once the analysis is complete; select the Go to Post Processing Mode radio button and choose the Done button; the Results Setup dialog box is displayed.

Choose the Apply and the OK button; the post-processing mode is displayed along with various results.

Choose the Plate tab; the Diagrams dialog box is displayed.

In the Diagrams dialog box, select the MY (local) option from the Stress type drop-down list and choose the OK button; the stress contours is visible in the model along with the legend.

Figure-15 shows the MY (local) stress contours in the model.

over head water tank analysis using staad pro

Figure-15 MY (local) stress contours of the model

Similarly, you can view various other stress contours for the plate elements.