How Upcoming Infrastructure Projects can Revolutionalize BIM in India?

How Upcoming Infrastructure Projects can Revolutionalize BIM in India?

BIM is not a new and unknown term in India anymore.

Introduction

In recent years, Building Information Modeling, otherwise known as BIM, has grown in popularity with professionals in architecture, engineering, and construction industry. This is mainly due in part to the efficient tools it gives AEC professionals in the planning, designing, construction, and overall management phases of buildings and infrastructures. However, in India, the implementation of BIM modeling and applications has been slow and gradual in many industries.

India’s slow rise in BIM

BIM has unequivocally become a necessity for construction in almost every developed and developing country including India. So why has the process taken long to adopt? Generally, India has been a bit hesitant to adopt new technologies, and BIM expertise in india are limited in the region. Not to mention the heavy initial cost of BIM and the lack of involvement from the government of india to quicken its implementation. However, rapid urbanization and industrialization has changed the scenario and has given rise to the need for better infrastructural set ups in india. As it is said that the quality of the country’s existing infrastructure is neither efficient nor environmentally optimal. Which means there is a need for BIM technology to revolutionize the construction landscape in India.

 Construction Companies Using BIM

As mentioned earlier, AEC professionals have incorporated BIM into their projects, and this includes some of the biggest construction companies across the globe like Hochtief, China Communications Construction Group, Vinci, and Samsung C&T. Among them is also Indian based company Larsen & Toubro. L&T is a company that claims to have mastered BIM from the start. Beginning with a conceptual demonstration to detail architecture, all the way up to post construction, among other performance-enhancing applications. This extends to their projects including airports, IT infrastructure buildings, public buildings such as sport infrastructure and metro stations, and factories using steel, reinforced concrete, and pre-stressed concrete. The adoption of BIM processes has allowed experts to explore a project’s crucial characteristics physically and digitally even before it’s been completely built.

So how does L&T incorporate BIM into their projects and can more Indian based construction companies follow? These are six key factors in L&T’s BIM incorporation of software and technology:

Turnkey Capability

To ensure a project can even begin, it is vital to establish the human need for it combined with the efficient use of space. L&T offers turnkey design and construction of infrastructure and modern amenitiesthat meet customer needs. This eliminates the possibility of having a project fail before it can reach stakeholders.

Construction Techniques

Using advanced production techniques and high-speed technologies like heated tunnel forms and aluminum form work help in the reinforcement of walls and floor slabs on a continuous single pour which thereby reduces time and cost. Buildings are less acceptable to collapse which reduces the need for rebuilding.

Avant-Garde Technology

L&T has India’s largest fleet of construction equipment that offers speed, high quality, and cost-effective construction. With a combination of construction techniques and a systematic schedule, L&T is able to ensure quick work progress at high levels of accuracy and enhanced productivity with safe practices. Buildings are built with accuracy and speed which reduces the cost and time to finish.

Design and Build

L&T’s concept is simple: The General Contractor takes single-point-responsibility. To elaborate, the General Contractor is responsible for coordinating with the other AEC professionals involved in the project, including MEP consultants and promoters. The General Contractor is able to collaborate and communicate with the other team members through BIM software as they work together, saving time and avoiding confusion with the software’s cloud feature.

Precast Technology

This technology ensures improved quality and stability within its environment. It offers precast engineering like a precast feasibility study, precast structural concepts, and architectural coordination, and recast element detail design for stripping and transportation, among other things. A detailed precast is able to show the feasibility of a project before its completion including its stability and design which is cost effective. This includes the possibility of unforeseen circumstances such as natural disasters or construction hazards.

Finishes Implementation Centre (FIC)

A team of professionals set benchmarks for project deliverables without compromising on the quality of final seen finishes. L&T’s construction engineers transform the architect’s designs and drawings to reality. Projects are delivered to end users as a product built to structural rigidity. Visualization and simulation including the use of 3-D models help assure clients of their finished project and allow for accuracy before a project is complete.

Benefits of using BIM

As evident by L&T, there are many benefits to using BIM technology. Among them are cost, time, management, visualization, and maintaining control of possible unforeseen circumstances. BIM software ensures collaboration with all teams and helps eliminate the need for having to do reworks which is both cost-effective and time-saving.

The Future of BIM in India’s Industry

With its many benefits, India is quickly realizing that BIM modeling is vital for AEC professionals to be able to work together to design and develop buildings. However, despite the known benefits, there are still barriers that prevent India from fully engaging in BIM implementation. These include cost of equipment, client driven limitations, lack of education and training, legal and commercial barriers. The good news is that progress is being made. There are now more than 50 AECO organizations that deliver BIM projects to the local and global market. More buildings and infrastructure are being built in India using BIM software and technology including metro stations and housing facilities. Free seminars are being held in Dubai at Construction Expos to specifically inform AEC professionals about the many benefits of BIM and how to utilize the model. This is a big step for the AECO industry, which is the second largest industry in India, employing more than 35 million as of 2015.

Conclusion

Countries, whether developed or developing, are seeing the long-lasting value in BIM technology. Though there is still progress that needs to be made and barriers that need to be lifted, with its adoption, future indications are promising for BIM technology in India’s Construction Industry.

 

 

 

 

 

 

 

 

 

 

 

 

Why Should Building Information Modeling (BIM) Start from the Early Stages?

Why Should Building Information Modeling (BIM) Start from the Early Stages?

Why Should Building Information Modeling (BIM) Start from the Early Stages ?

So, what is BIM or Building Information Modeling?

The definition of Building Information Modeling or Building Information Model(BIM); describes the process of designing a building on a collaborative level. Thus, using one system of computer models, coherently bringing the design together; rather than many separate sets of drawings. Moreover, a digital representation of the functional and physical characteristics of a facility. It is a resource of shared knowledge or information regarding a facility. This information can be essential to making responsible decisions regarding a facility way to early than from the traditional CAD drawings. Not just from the conception of the building, but during the facilities life cycle too. It is a plan from the conceptualization of the structure to demolition. In short, it is a piece of software(s) that designs the building, from birth to death.

Understanding (BIM) Modeling, helps us see its potential impact.  Now, that we understand the definition of Building Information Modeling (BIM) software, let’s look at a few of the advantages BIM software offer.

  • Easy visualization of your construction project in a 3D environment.
  • Less rework on design changes thereby acting as money saver and time saver,
  • Improved collaboration between consultants reducing on-site coordination issues early,
  • Various simulations can be performed such as construction sequencing and construction cost providing transparency among shareholders

It is easy to see why starting with BIM or Building Information Modeling in the earliest stages of a construction would be the smart move. BIM allows the stakeholders to bring their construction projects to fruition more seamlessly, and with fewer surprises. Traditionally designing buildings relied mostly on two-dimensional technical drawings. (e.g., sections, elevations, and plans to name a few), recently, the shift to BIM has created more value.

3D (height, width, and depth), and beyond!

With the development of computer programs from old days, there was a considerable innovation of being able to create your buildings in 3D and the old drawing table and tools of the trade of architecture. Drafting on the paper in the digital was only the start. Building Information Modeling(BIM) extends the scope of what the older programs did. Also, taking it the ways beyond 3D as technology kept changing and is changing.

Building information modeling, 3D design software, with a twist.

Not only you have the 3D capabilities as you had in the older and more traditional CAD software, BIM brings time as the fourth dimension, cost as the fifth dimension and has a much broader scope and meaning than just geometry. It carries the manufacturer information for the properties and quantities of building components, and materials used in the completion of the building. BIM is capable of projecting completion time as and when necessary repairs to the structure might expect. From Construction Documentation to Maintenance, everyone working on the project is on the same page and they have access to, and can enter data into the BIM, which is essential to a seamless outcome.

(BIM) modeling services can build from the ground up.

The BIM modeling program or services first starts from the ground underneath the structure. The project begins with the images of the earth, digital elevation, and aerial imagery, along with laser scans of the existing site. BIM is capable of capturing real-time information in regard with the project location. BIM Designers benefit from all the input compiled and shared in a way paper was never able to do.

Imagine you need to make changes to your project, now what?

There was a time when, if there were changes in a plan (e.g., number of size of windows) for some reason, an entirely new drawing had to be redraw to account for the differences. Maybe just to add a staircase or another exit. Now, while using BIM, you make the changes, hit save, and the whole team has access to the new information in real time using cloud technology. Instead of heading back to the drawing table, and starting again, adding and taking elements away has become a thing of ease now. Think of the money saved by an action to just save the project, thus helping everyone to stay on the same page while working on the construction project; this is one of the more luxurious aspects of Building information modeling. It will also link construction cost and installation costs for the newly added attributes to the building. Thus, saving time and significantly reducing the overall cost of the building project.

Building Information Modeling(BIM) programs and the environment.

BIM modeling can also take the overall operational costs of the finished product in mind. It also has multiple simulation options available so that the design staff can observe the building attributes in all seasons. Its features such as this that can assist in building smarter, more economical, and energy efficient structures. With the click of a button, all the analyses can be done to achieve peak performance. Building Information Modeling(BIM) programs can also detect potentially costly errors on the construction site and can inform about its occurrence such as on-site coordination issues. Things such as electrical conduits or ducts that runs into beams on site; this on-site issue can be expensive, and can be effectively bypassed with BIM modeling. The problem will be detected before you break ground to construction. BIM has the ability to fix such issues, such as these on-site coordination issues, that often plague projects when run by multiple teams. Here again, BIM is a money saver for construction projects. Also, BIM is an excellent way for the transfer of knowledge by sharing traditional plans, sections, elevations, as well as other types of reports that the teams can share with other parts of the project team. The software has customizable features and automation tools such as annotating a category of elements at once, saves precious drafting time; thus, conserving the project money and construction pitfalls.

BIM modeling software helps sequence the steps in a building plan.

BIM modeling software can sequence the steps of building the structure and all phases of these steps, down to the materials needed to accomplish the next step in the series of construction. The sequencing of steps is completed with animations and simulations, helping to coordinate the construction processes. Hence, delivering a more predictable outcome of the project beneficial for stakeholders. These are just some of the reasons that if a BIM plan is in place and is wisely used in the earlier on in the project, the better or smoother the project progresses. Making projects more seamless while saving valuable time and money on any project from a home to a high-rise building.

What is Building Information Modeling? BIM Adoption in India

What is Building Information Modeling? BIM Adoption in India

Global BIM (Building Information Modeling) scenario

In the construction industry, traditional methods (2D) for design and construction is being rapidly moving towards 3D digital models: BIM. Developing intelligent 3D digital models and communicating project information with ease within the project team is the key within BIM.

The current BIM Adoption in India in building industry began by the similar approach as the decades-long usage of digital prototyping by the manufacturing industry for engineering, analysis, and production of products.

In today’s scenario, as the economies are rebounding at a snail pace, the building supply chain ranging from architects, engineers, contractors, and fabricators are expected to deliver projects faster and within smaller budgets. To gain the competitive edge, more and more firms are adopting BIM which improves productivity and profit margins which have resulted in many BIM mandates across various countries.

Expectations are growing for closer collaboration of different disciplines within the project. Advancement in technologies for communication and cloud technologies has transformed how people work together.

Prefabrication has witnessed increased demand by improving construction productivity and BIM work-flow bridges design and construction by connecting designers with fabricators and contractors.

Economic construction with clear design intents has become the expected standard for building projects in today’s world. BIM work-flows and analysis tools help firms evaluating the cost-effective project delivery at every stage.

Therefore, rapid BIM adoption in India in the construction industry has clearly highlighted that the industry is moving away from the traditional 2D methods towards BIM for fast and cost-effective project delivery.

 

Can we still rely on decade-old 2D process and technology to survive?

Before answering this question, let’s closely look at what is BIM.

It’s the question the majority of us from the Architecture, and Construction background must know. BIM is a way to create the digital model of the building or infrastructure before its actual construction. Note that the digital model must be intelligent enough to provide various information such as visualization, documentation, cost estimation, clashes, simulation, etc.

BIM tools such as Autodesk Revit works on integrated databases to maintain relationships between different model elements by connecting everything. Additional efforts are none to keep the project data in sync and manual labor is less.

Professionals practicing BIM has experienced reduced errors and omissions, reduced project duration, more profit, win new projects, repeat business, etc as short and long-term BIM benefits.

To survive in the upcoming times, firms must re-work on their strategies by adding the use of BIM. One cannot sit back and wait for the increased BIM Adoption in India in their business markets. They need to be at the forefront of using BIM.

 

Looking for best Revit trainers in Delhi-NCR then contact us at contact@bimncad.com

Over head water tank analysis using STAAD.Pro

Over head water tank analysis using STAAD.Pro

In this tutorial, over head water tank analysis will be done using STAAD.Pro V8i. The detailed procedure is given below.

Open STAAD.Pro V8i and create a new Space structure with Meter and KiloNewton as Length Units and Force Units.

Select the Beam page under Geometry tab; the Snap Node/Beam window is displayed.

Close the Snap Node/Beam window.

In the Nodes window, create the nodes with the data given below. Figure-1 shows the nodes created.

NodeX

 

m

Y

 

m

Z

 

m

10200
21200
31230
44250
52170
64180

over head water tank analysis using staad pro

Figure-1 The Nodes created

Now, we will create the members in the upward direction so that the plates could be created with the same orientation. If the plates are created in different orientation, you cannot assign a single load case to plates with different orientations.

Create the members with the data given below. Figure-2 shows the members created.

BeamNode ANode B
152
221
323
434
556

over head water tank analysis using staad pro

Figure-2 The Members created

 

Now, we will create a segment of the tank using the Circular Repeat tool.

Select all the members and then choose the Circular Repeat tool from the Geometry menu; the 3D Circular dialog box is displayed.

Enter the values as shown in Figure-3.

over head water tank analysis using staad pro

Figure-3 The 3D Circular dialog box

Choose the OK button; the model will be repeated at 20 degrees with rotational axis as Y-axis.

Select all the members and then select the Create Infill Plates option from the Geometry menu; the plates will be automatically created in the areas enclosed by the members.

Select the outer periphery beams as shown in Figure-4 and delete them.

over head water tank analysis using staad pro

Figure-4 Periphery beams to be deleted

Now, we will apply loads to the plates.

Select the Loads & Definition page from the General tab; the Load & Definition window is displayed.

Select the Load Cases Details node in the Load & Definition window and choose the Add button; the Add New: Load Cases dialog box is displayed with the Primary node selected by default.

Select the Fluids option from the Loading Type drop-down list and enter Fluid Loads in the Title text box.

Choose the Add button; the primary load case will be created under the Load Case Details node of the Load & Definition window. Close the Add New: Load Cases dialog box.

Select the newly created Fluid Loads load case and choose the Add button from the Load & Definition window; the Add New: Load Items dialog box is displayed.

Select the Plate Loads node in the Add New: Load Items dialog box; the Pressure on Full Plate page is displayed by default.

Enter -76 as load intensity in the W1 text box and select GY as the load direction. Choose the Add button; the load is added under the Fluid Loads load case.

Select the Hydrostatic page from the Plate Loads node in the Add New: Load Items dialog box; the Hydrostatic page is displayed.

The options are unavailable as no plates are selected.

Choose the Select Plate(s) button from the Add New: Load Items dialog box; the Selected Items dialog box is displayed.

Choose the Plates cursor and select the plate as shown in Figure-5; the plate number is displayed in the Selected Items(s) dialog box.

over head water tank analysis using staad pro

Figure-5 The selected plate onto which load is applied

Choose the Done button from the Selected Items(s) dialog box; the Selected Items(s) dialog box is closed and the options are available in the Hydrostatic page.

Enter -53.9 in the W1 edit box and -0.009 in the W2 edit box.

Select the Y and Local Z radio buttons in the Interpolate along Global Axis and Direction of pressure areas, respectively.

Choose the Add button; the load is added under the Fluid Loads load case.

Similarly, add the hydrostatic load of the magnitude ranging from -53.9 to -66.4 kN/m2 on the plate just below the vertical plate, as shown in Figure-6.

over head water tank analysis using staad pro

Figure-6 The selected plate onto which load is applied

Now we will assign the uniform pressure created in previous steps onto the bottom plate of tank.

Select the uniform pressure load and assign it to the plate as shown in Figure-7.

over head water tank analysis using staad pro

Figure-7 The load applied onto the bottom most plate

Create a new load case for dead loads and add self weight and a uniform load for railing. The railing will be placed onto the beam situated at the edge of the cantilever plate, as shown in Figure-8.

over head water tank analysis using staad pro

Figure-8 The self weight and railing load applied

Now we will provide sectional properties to the model.

Select the Properties page from the General tab; the Properties – Whole Structure window is displayed.

Choose the Thickness button from the Properties – Whole Structure window; the Plate Element/Surface Property dialog box is displayed.

Enter 0.15 as thickness in the Node 1 edit box and make sure that the Concrete option is selected from the Material drop-down list. Choose the Add button; the Plate Element/Surface Property dialog box is closed.

Select the Assign to View radio button from the Properties – Whole Structure window and then choose the Assign button; the property is assigned to each plate created.

Choose the Define button from the Properties – Whole Structure window; the Property dialog box is displayed.

Select the Rectangle node; the Rectangle page is displayed. Enter 0.45 and 0.30 in the YD and ZD edit boxes respectively.

Choose the Add button; the Property dialog box is closed and the property is added to the Properties – Whole Structure window.

Assign the newly created property to the members in the model.

Similarly, assign a cross sectional property of 0.15m x 0.15m to the member carrying railing load.

over head water tank analysis using staad pro

Figure-9 Properties added and assigned to the model

Select the Support page from the General tab; the Supports – Whole Structure window is displayed.

Choose the Create button; the Create Support dialog box is displayed with the Fixed tab chosen by default.

Choose the Add button; the fixed support is added to the Supports – Whole Structure window.

Assign the fixed support created to the lowermost nodes, as shown in Figure-10.

over head water tank analysis using staad pro

Figure-10 Fixed supports added to the model

Select the plates and members using the Geometry Cursor and choose the Circular Repeat option from the Geometry menu; the 3D Circular dialog box is displayed.

Enter the values as shown in Figure-11.

over head water tank analysis using staad pro

Figure-11 The 3D Circular dialog box

Choose the OK button; the model will be repeated at 360 degrees with rotational axis as Y-axis

Figure-12 shows the water tank created.

over head water tank analysis using staad pro

Figure-12 Model of water tank created

Figure-13 and Figure-14 shows the 3D rendered views of the water tank.

over head water tank analysis using staad pro

Figure-13 3D rendered view of the water tank model

over head water tank analysis using staad pro

Figure-14 3D rendered view of the water tank model

Now, we will analyze the model created.

Select the Perform Analysis option from the Analysis fly-out in the Commands menu; the Perform Analysis dialog box is displayed.

Close the Perform Analysis dialog box and select the Run Analysis option from the Analyze menu; the STAAD Analysis and Design window is displayed showing the progress of solution.

Once the analysis is complete; select the Go to Post Processing Mode radio button and choose the Done button; the Results Setup dialog box is displayed.

Choose the Apply and the OK button; the post-processing mode is displayed along with various results.

Choose the Plate tab; the Diagrams dialog box is displayed.

In the Diagrams dialog box, select the MY (local) option from the Stress type drop-down list and choose the OK button; the stress contours is visible in the model along with the legend.

Figure-15 shows the MY (local) stress contours in the model.

over head water tank analysis using staad pro

Figure-15 MY (local) stress contours of the model

Similarly, you can view various other stress contours for the plate elements.

What is Scan to BIM Services or Point Cloud to BIM ?

What is Scan to BIM Services or Point Cloud to BIM ?

Building Information Modelling (BIM) has become one of the most promising developments in the architecture, engineering, and construction (AEC) industries, and fundamentally it is changing the way the construction industry works. In recent years, the industry has shifted from traditional two-dimensional drawings, drafts, and designs to 3D visualizations. And worldwide has adopted the BIM concepts and technologies of Building Information Modelling and there is an upward demand for the digitalization of the existing building stock.

“Scan to BIM Services (popularly known as Point Cloud to BIM) referred to the process of 3D laser scanning a physical space or site, to create an accurate digital point cloud of the structure and using scans BEM software, bridge the gap between a separate digital point cloud and one that can be used inside the Autodesk Revit platform. That representation can then be used for designing, assessing progress or evaluation options.”

Scan to BIM is a technology that came as a breakthrough in the construction industries as it is accelerating rapidly as it provides a faster, captures dimensions, volume quickly, efficiently, a highly detailed and accurate structural profile for capturing survey data critical for refurbishment or retro-fitting existing projects.

Point clouds resulting from scan data are massively powerful for analysis on their own. Converting scan data into BIM models is customarily a three-step process: First, from different scanning stations, multiple scans are captured from. Second, data from multiple scanning stations is stitched together in what is commonly known as the post-processing or registration stage. Next, CAD or BIM software can be used to author object models while referencing the point cloud.

It is clear that Scan to BIM is the future of AEC industry and produces high definition scanning has practical, time (faster than 2D drawings) and cost-saving applications especially at the initial stages of repositioning projects and increase the accuracy of project information.

Author: Anisha Khatun